Peer-Reviewed Publications 

Angiogenesis Dynamics

Altalhi, W., X. Sun, J.M. Sivak, M. Husain, and S.S. Nunes, Diabetes impairs arterio-venous specification in engineered vascular tissues in a perivascular cell recruitment-dependent manner. Biomaterials, 2017. 119: p. 23-32. https://www.sciencedirect.com/science/article/pii/S0142961216306925?via%3Dihub

Carter, W.B., K. Uy, M.D. Ward, and J.B. Hoying, Parathyroid-induced angiogenesis is VEGF-dependent. Surgery, 2000. 128(3): p. 458-64. https://www.surgjournal.com/article/S0039-6060(00)89857-8/fulltext

Flann, K.L., C.R. Rathbone, L.C. Cole, X. Liu, R.E. Allen, and R.P. Rhoads, Hypoxia simultaneously alters satellite cell-mediated angiogenesis and hepatocyte growth factor expression. J Cell Physiol, 2014. 229(5): p. 572-9. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.24479

Hoying, J.B., C.A. Boswell, and S.K. Williams, Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev Biol Anim, 1996. 32(7): p. 409-19. https://link.springer.com/article/10.1007%2FBF02723003

Jeon, H., M. Ono, C. Kumagai, K. Miki, A. Morita, and Y. Kitagawa, Pericytes from microvessel fragment produce type IV collagen and multiple laminin isoforms. Biosci Biotechnol Biochem, 1996. 60(5): p. 856-61. https://www.tandfonline.com/doi/pdf/10.1271/bbb.60.856

Karschnia, P., C. Scheuer, A. Hess, T. Spater, M.D. Menger, and M.W. Laschke, Erythropoietin promotes network formation of transplanted adipose tissue-derived microvascular fragments. Eur Cell Mater, 2018. 35: p. 268-280. https://www.ncbi.nlm.nih.gov/pubmed/29761823

McDaniel, J.S., M. Pilia, C.L. Ward, B.E. Pollot, and C.R. Rathbone, Characterization and multilineage potential of cells derived from isolated microvascular fragments. J Surg Res, 2014. 192(1): p. 214-22. https://www.journalofsurgicalresearch.com/article/S0022-4804(14)00487-9/fulltext

Nunes, S.S., H. Rekapally, C.C. Chang, and J.B. Hoying, Vessel arterial-venous plasticity in adult neovascularization. PLoS One, 2011. 6(11): p. e27332. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221655/

Nunes, S.S., K.A. Greer, C.M. Stiening, H.Y. Chen, K.R. Kidd, M.A. Schwartz, C.J. Sullivan, H. Rekapally, and J.B. Hoying, Implanted microvessels progress through distinct neovascularization phenotypes. Microvasc Res, 2010. 79(1): p. 10-20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813398/

Nunes, S.S., L. Krishnan, C.S. Gerard, J.R. Dale, M.A. Maddie, R .L. Benton, and J.B. Hoying, Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation, 2010. 17(7): p. 557-67. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057771/

Rhoads, R.P., R.M. Johnson, C.R. Rathbone, X. Liu, C. Temm-Grove, S.M. Sheehan, J.B. Hoying, and R.E. Allen, Satellite cell-mediated angiogenesis in vitro coincides with a functional hypoxia-inducible factor pathway. Am J Physiol Cell Physiol, 2009. 296(6): p. C1321-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692418/

Vartanian, K.B., H.Y. Chen, J. Kennedy, S. K. Beck, J.T. Ryaby, H. Wang, and J.B. Hoying, The non-proteolytically active thrombin peptide TP508 stimulates angiogenic sprouting. J Cell Physiol, 2006. 206(1): p. 175-80. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.20442

 
 

Angiogenesis and Tissue Biomechanics

Edgar LT, Maas SA, Guilkey JE, Weiss JA. A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro. Biomech Model Mechanobiol. 2015;14(4):767-82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447608/


Edgar LT, Sibole SC, Underwood CJ, Guilkey JE, Weiss JA. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput Methods Biomech Biomed Engin. 2013;16(7):790-801. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459304/


Edgar, L.T., C.J. Underwood, J.E. Guilkey, J.B. Hoying, and J.A. Weiss, Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One, 2014. 9(1): p. e85178. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898992/


Edgar, L.T., J.B. Hoying, and J.A. Weiss. In Silico Investigation of Angiogenesis with Growth and Stress Generation Coupled to Local Extracellular Matrix Density. Ann Biomed Eng. 2015;43(7):1531-42. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4629919/


Edgar, L.T., J.B. Hoying, U. Utzinger, C.J. Underwood, L. Krishnan, B.K. Baggett, S.A. Maas, J.E. Guilkey, and J.A. Weiss, Mechanical interaction of angiogenic microvessels with the extracellular matrix. J Biomech Eng, 2014. 136(2): p. 021001. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023669/


Kirkpatrick, N.D., S. Andreou, J.B. Hoying, and U. Utzinger, Live imaging of collagen remodeling during angiogenesis. Am J Physiol Heart Circ Physiol, 2007. 292(6): p. H3198-206. https://www.physiology.org/doi/full/10.1152/ajpheart.01234.2006


Krishnan, L., C.J. Underwood, S. Maas, B.J. Ellis, T.C. Kode, J.B. Hoying, and J.A. Weiss, Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res, 2008. 78(2): p. 324-32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840993/


Krishnan, L., J.B. Hoying, H. Nguyen, H. Song, and J.A. Weiss, Interaction of angiogenic microvessels with the extracellular matrix. Am J Physiol Heart Circ Physiol, 2007. 293(6): p. H3650-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840990/


Underwood, C.J., L.T. Edgar, J.B. Hoying, and J.A. Weiss, Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis. Am J Physiol Heart Circ Physiol, 2014. 307(2): p. H152-64. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101638/


Utzinger, U., B. Baggett, J.A. Weiss, J.B. Hoying, and L.T. Edgar, Large-scale time series microscopy of neovessel growth during angiogenesis. Angiogenesis, 2015. 18(3): p. 219-32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782613/

Tissue Vascularization

Acosta FM, Stojkova, K, Brey EM, and Rathbone, CR.  A Straightforward Approach to Engineer Vascularized Adipose Tissue Using Microvascular Fragments. Tissue Eng Part A. 2020 Apr 6. doi: 10.1089/ten.TEA.2019.0345. Online ahead of print

Chang, C.C. and J.B. Hoying, Directed three-dimensional growth of microvascular cells and isolated microvessel fragments. Cell Transplant, 2006. 15(6): p. 533-40. https://journals.sagepub.com/doi/pdf/10.3727/000000006783981693


Chang, C.C., L. Krishnan, S.S. Nunes, K.H. Church, L.T. Edgar, E.D. Boland, J.A. Weiss, S.K. Williams, and J.B. Hoying, Determinants of microvascular network topologies in implanted neovasculatures. Arterioscler Thromb Vasc Biol, 2012. 32(1): p. 5-14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256738/


Chang, C.C., S.S. Nunes, S.C. Sibole, L. Krishnan, S.K. Williams, J.A. Weiss, and J.B. Hoying, Angiogenesis in a microvascular construct for transplantation depends on the method of chamber circulation. Tissue Eng Part A, 2010. 16(3): p. 795-805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862615/


Hiscox, A.M., A.L. Stone, S. Limesand, J.B. Hoying, and S.K. Williams, An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng Part A, 2008. 14(3): p. 433-40. https://www.liebertpub.com/doi/abs/10.1089/tea.2007.0099

 

Laschke MW, Später T, Menger MD. Microvascular Fragments: More Than Just Natural Vascularization Units. Trends Biotechnol. 2020; S0167-7799(20)30165-7. https://pubmed.ncbi.nlm.nih.gov/32593437/


Laschke, M.W. and M.D. Menger, Adipose tissue-derived microvascular fragments: natural vascularization units for regenerative medicine. Trends Biotechnol, 2015. 33(8): p. 442-8. https://www.ncbi.nlm.nih.gov/pubmed/26137863


Laschke, M.W., Kontaxi, E., Scheuer, C., Heß, A., Karschnia, P., Menger, MD. Insulin-like growth factor 1 stimulates the angiogenic activity of adipose tissue–derived microvascular fragments. J Tissue Eng. 2019 Jan-Dec; 10: 2041731419879837. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767710/


Laschke, M.W., A. Hess, C. Scheuer, P. Karschnia, and M.D. Menger, Subnormothermic short-term cultivation improves the vascularization capacity of adipose tissue-derived microvascular fragments. J Tissue Eng Regen Med, 2018. https://onlinelibrary.wiley.com/doi/abs/10.1002/term.2774?af=R


Laschke, M.W., P. Karschnia, C. Scheuer, A. Hess, W. Metzger, and M.D. Menger, Effects of cryopreservation on adipose tissue-derived microvascular fragments. J Tissue Eng Regen Med, 2018. 12(4): p. 1020-1030. https://www.ncbi.nlm.nih.gov/pubmed/29047209


Spater, T., C. Korbel, F.S. Frueh, R.M. Nickels, M.D. Menger, and M.W. Laschke, Seeding density is a crucial determinant for the in vivo vascularisation capacity of adipose tissue-derived microvascular fragments. Eur Cell Mater, 2017. 34: p. 55-69. https://www.ecmjournal.org/papers/vol034/pdf/v034a04.pdf


Stabenfeldt, S.E., M. Gourley, L. Krishnan, J.B. Hoying, and T.H. Barker, Engineering fibrin polymers through engagement of alternative polymerization mechanisms. Biomaterials, 2012. 33(2): p. 535-44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350801/

 
 
 

Graft/Implant Vascularization

Frueh, F.S., T. Spater, C. Korbel, C. Scheuer, A.C. Simson, N. Lindenblatt, P. Giovanoli, M.D. Menger, and M.W. Laschke, Prevascularization of dermal substitutes with adipose tissue-derived microvascular fragments enhances early skin grafting. Sci Rep, 2018. 8(1): p. 10977. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054621/


Frueh, F.S., T. Spater, N. Lindenblatt, M. Calcagni, P. Giovanoli, C. Scheuer, M.D. Menger, and M.W. Laschke, Adipose Tissue-Derived Microvascular Fragments Improve Vascularization, Lymphangiogenesis, and Integration of Dermal Skin Substitutes. J Invest Dermatol, 2017. 137(1): p. 217-227. https://www.sciencedirect.com/science/article/pii/S0022202X16322758


Grasser, C., C. Scheuer, J. Parakenings, T. Tschernig, D. Eglin, M.D. Menger, and M.W. Laschke, Effects of macrophage-activating lipopeptide-2 (MALP-2) on the vascularisation of implanted polyurethane scaffolds seeded with microvascular fragments. Eur Cell Mater, 2016. 32: p. 74-86. https://www.ncbi.nlm.nih.gov/pubmed/27386841


Gruionu, G., A.L. Stone, M.A. Schwartz, J.B. Hoying, and S.K. Williams, Encapsulation of ePTFE in prevascularized collagen leads to peri-implant vascularization with reduced inflammation. J Biomed Mater Res A, 2010. 95(3): p. 811-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958221/


Laschke, M.W., S. Kleer, C. Scheuer, S. Schuler, P. Garcia, D. Eglin, M. Alini, and M.D. Menger, Vascularisation of porous scaffolds is improved by incorporation of adipose tissue-derived microvascular fragments. Eur Cell Mater, 2012. 24: p. 266-77. https://www.ecmjournal.org/papers/vol025/vol024/pdf/v024a19.pdf


Nakano, M., Y. Nakajima, S. Kudo, Y. Tsuchida, H. Nakamura, and O. Fukuda, Effect of autotransplantation of microvessel fragments on experimental random-pattern flaps in the rat. Eur Surg Res, 1998. 30(3): p. 149-60. https://www.ncbi.nlm.nih.gov/pubmed/9627211


Nakano, M., Y. Nakajima, S. Kudo, Y. Tsuchida, H. Nakamura, and O. Fukuda, Successful autotransplantation of microvessel fragments into the rat heart. Eur Surg Res, 1999. 31(3): p. 240-8. https://www.ncbi.nlm.nih.gov/pubmed/10352352


Nakano, M., Y. Nakajima, Y. Tsuchida, S. Kudo, H. Nakamura, and O. Fukuda, Direct evidence of a connection between autotransplanted microvessel fragments and the host microvascular system. Int J Microcirc Clin Exp, 1997. 17(4): p. 159-63. https://www.ncbi.nlm.nih.gov/pubmed/9378565


Orth, M., M.A.B. Altmeyer, C. Scheuer, B.J. Braun, J.H. Holstein, D. Eglin, M. D'Este, T. Histing, M.W. Laschke, T. Pohlemann, and M.D. Menger, Effects of locally applied adipose tissue-derived microvascular fragments by thermoresponsive hydrogel on bone healing. Acta Biomater, 2018. 77: p. 201-211. https://www.ncbi.nlm.nih.gov/pubmed/30030175


Pilia, M., J.S. McDaniel, T. Guda, X.K. Chen, R.P. Rhoads, R.E. Allen, B.T. Corona, and C.R. Rathbone, Transplantation and perfusion of microvascular fragments in a rodent model of volumetric muscle loss injury. Eur Cell Mater, 2014. 28: p. 11-23. https://www.ncbi.nlm.nih.gov/pubmed/25017641


Shepherd, B.R., H.Y. Chen, C.M. Smith, G. Gruionu, S.K. Williams, and J.B. Hoying, Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler Thromb Vasc Biol, 2004. 24(5): p. 898-904. https://www.ahajournals.org/doi/full/10.1161/01.ATV.0000124103.86943.1e


Shepherd, B.R., J.B. Hoying, and S.K. Williams, Microvascular transplantation after acute myocardial infarction. Tissue Eng, 2007. 13(12): p. 2871-9. https://www.liebertpub.com/doi/abs/10.1089/9781934854167.283


Spater, T., F.S. Frueh, M.D. Menger, and M.W. Laschke, Potentials and limitations of Integra(R) flowable wound matrix seeded with adipose tissue-derived microvascular fragments. Eur Cell Mater, 2017. 33: p. 268-278. https://www.ncbi.nlm.nih.gov/pubmed/28378876


Spater, T., F.S. Frueh, P. Karschnia, M.D. Menger, and M.W. Laschke, Enoxaparin does not affect network formation of adipose tissue-derived microvascular fragments. Wound Repair Regen, 2018. 26(1): p. 36-45. https://www.ncbi.nlm.nih.gov/pubmed/29505164


Spater, T., F.S. Frueh, R.M. Nickels, M.D. Menger, and M.W. Laschke, Prevascularization of collagen-glycosaminoglycan scaffolds: stromal vascular fraction versus adipose tissue-derived microvascular fragments. J Biol Eng, 2018. 12: p. 24. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234670/


Stone, R., 2nd and C.R. Rathbone, Microvascular Fragment Transplantation Improves Rat Dorsal Skin Flap Survival. Plast Reconstr Surg Glob Open, 2016. 4(12): p. e1140. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222647/

Advanced Solutions logo
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn

© 2020 Advanced Solutions Life Sciences, LLC

ASI logo